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C H A P T E R

The Concepts of Power Analysis

The power of a statistical test is the probability that it will yield statis-
tically significant results. Since statistical significance is so earnestly sought
and devoutly wished for by behavioral scientists, one would think that the
a priori probability of its accomplishment would be routinely determined
and well understood. Quite surprisingly, this is not the case. Instead, if we take
as evidence the research literature, we find that statistical power is only infre-
quently understood and almost never determined. The immediate reason
for this is not hard to discern — the applied statistics textbooks aimed at
behavioral scientists, with few exceptions, give it scant attention.

The purpose of this book is to provide a self-contained comprehensive
treatment of statistical power analysis from an "applied" viewpoint. The
purpose of this chapter is to present the basic conceptual framework of
statistical hypothesis testing, giving emphasis to power, followed by the frame-
work within which this book is organized.

1.1 GENERAL INTRODUCTION
When the behavioral scientist has occasion to don the mantle of the

applied statistician, the probability is high that it will be for the purpose of
testing one or more null hypotheses, i.e., "the hypothesis that the phenome-
non to be demonstrated is in fact absent [Fisher, 1949, p. 13]." Not that he
hopes to "prove" this hypothesis. On the contrary, he typically hopes to
"reject" this hypothesis and thus "prove" that the phenomenon in question
is in fact present.

Let us acknowledge at the outset the necessarily probabilistic character
of statistical inference, and dispense with the mocking quotation marks
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t 1 THE CONCEPTS OF POWER ANALYSIS

about words like reject and prove. This may be done by requiring that an
investigator set certain appropriate probability standards for research
results which provide a basis for rejection of the null hypothesis and hence
for the proof of the existence of the phenomenon under test. Results from a
random sample drawn from a population will only approximate the charac-
teristics of the population. Therefore, even if the null hypothesis is, in fact,
true, a given sample result is not expected to mirror this fact exactly. Before
sample data are gathered, therefore, the investigator working in the Fisherian
framework selects some prudently small value a (say .01 or .05), so that he
may eventually be able to say about his sample data, "If the null hypothesis is
true, the probability of the obtained sample result is no more than a," i.e.
a statistically significant result. I/he can make this statement, since a is small,
he is said to have rejected the null hypothesis "with an a significance cri-
terion" or "at the a significance level." If, on the other hand, he finds the
probability to be greater than a, he cannot make the above statement and
he has failed to reject the null hypothesis, or, equivalently finds it "tenable,"
or "accepts" it, all at the a significance level.

We have thus isolated one element of this form of statistical inference,
the standard of proof that the phenomenon exists, or, equivalently, the
standard of disproof of the null hypothesis that states that the phenomenondoes not exist.

Another component of the significance criterion concerns the exact defini-
tion of the nature of the phenomenon's existence. This depends on the details
of how the phenomenon is manifested and statistically iested, e.g., the
directionality/nondirectionality ("one tailed "/"two tailed") of the state-
ment of the alternative to the null hypothesis.' When, for example, the investi-
gator is working in a context of comparing some parameter (e.g., mean,
proportion, correlation coefficient) for two populations A and B, he can
define the existence of the phenomenon in two different ways:

1. The phenomenon is taken to exist if the parameters of A and B differ.
No direction of the difference, such as A larger than B, is specified, so that
departures in either direction from the null hypothesis constitute evidence
against it. Because either tail of the sampling distribution of differences may
contribute to a, this is usually called a two-tailed or two-sided test.

2. The phenomenon is taken to exist only if the parameters of A and B
differ in a direction specified in advance, e.g., A larger than B. In this

1 Some statistical tests, particularly those involving comparisons of more than two
populations, are naturally nondirectional. In what immediately follows, we consider those
tests which contrast two populations, wherein the experimenter ordinarily explicitly
chooses between a directional and nondirectional statement of his alternate hypothesis.See below. Chapters 7 and 8.
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circumstance, departures from the null hypothesis only in the direction
specified constitute evidence against it. Because only one tail of the sampling
distribution of differences may contribute to a, this is usually called a one-
tailed or one-sided test.

It is convenient to conceive of the significance criterion as embodying both
the probability of falsely rejecting the null hypothesis, a, andthe"sidedness"
of the definition of the existence of the phenomenon (when relevant). Thus,
the significance criterion on a two-tailed test of the null hypothesis at the .05
significance level, which will be symbolized as a2 = .05, says two things:
(a) that the phenomenon whose existence is at issue is understood to be
manifested by any difference between the two populations' parameter values,
and (b) that the standard of proof is a sample result that would occur less than
5 % of the time if the null hypothesis is true. Similarly, a prior specification
defining the phenomenon under study as that for which the parameter value
for A is larger than that of B (i.e., one-tailed) and the probability of falsely
rejecting the null is set at. 10 would be symbolized as a significance criterion of
a, = .10. The combination of the probability and the sidedness of the test
into a single entity, the significance criterion, is convenient because this
combination defines in advance the " critical region," i.e., the range of values
of the outcome which leads to rejection of the null hypothesis and, perforce,
the range of values which leads to its nonrejection. Thus, when an investi-
gator plans a statistical test at some given significance criterion, say a, = .10,
he has effected a specific division of all the possible results of his study into
those which will lead him to conclude that the phenomenon exists (with
risk a no greater than .10 and a one-sided definition of the phenomenon) and
those which will not make possible that conclusion.2

The above review of the logic of classical statistical inference reduces to a
null hypothesis and a significance criterion which defines the circumstances
which will lead to its rejection or nonrejection. Observe that the significance
criterion embodies the risk of mistakenly rejecting a null hypothesis. The
entire discussion above is conditional on the truth of the null hypothesis.

But what if, indeed, the phenomenon does exist and the null hypothesis is
false! This is the usual expectation of the investigator, who has stated the
null hypothesis for tactical purposes so that he may reject it and conclude
that the phenomenon exists. But, of course, the fact that the phenomenon
exists in the population far from guarantees a statistically significant result,

1 The author has elsewhere expressed serious reservations about the use of directional
tests in psychological research in all but relatively limited circumstances (Cohen, 1965).
The bases for these reservations would extend to other regions of behavioral science.
These tests are however of undoubted statistical validity and in common use, so he has
made full provision for them in this work.
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i.e., one which warrants the conclusion that it exists, for this conclusion
depends upon meeting the agreed-upon standard of proof (i.e., significance
criterion). It is at this point that the concept of statistical power must be
considered.

The power of a statistical test of a null hypothesis is the probability that it
will lead to the rejection of the null hypothesis, i.e., the probability that it will
result in the conclusion that the phenomenon exists. Given the characteristics
of a specific statistical test of the null hypothesis and the state of affairs in
the population, the power of the test can be determined. It clearly represents
a vital piece of information about a statistical test applied to research data
(cf. Cohen, 1962). For example, the discovery, during the planning phase of
an investigation, that the power of the eventual statistical test is low should
lead to a revision in the plans. As another example, consider a completed
experiment which led to nonrejection of the null hypothesis. An analysis
which finds that the power was low should lead one to regard the negative
results as ambiguous, since failure to reject the null hypothesis cannot have
much substantive meaning when, even though the phenomenon exists (to
some given degree), the a priori probability of rejecting the null hypothesis was
low. A detailed consideration of the use of power analysis in planning investi-
gations and assessing completed investigations is reserved for .later sections.

The power of a statistical test depends upon three parameters: the signi-
ficance criterion, the reliability of the sample results, and the "effect size,"
that is, the degree to which the phenomenon exists.

1.2 SIGNIFICANCE CRITERION

The role of this parameter in testing null hypotheses has already been
given some consideration. As noted above, the significance criterion repre-
sents the standard of proof that the phenomenon exists, or the risk of mis-
takenly rejecting the null hypothesis. As used here, it directly implies the
"critical region of rejection" of the null hypothesis, since it embodies both
the probability of a class of results given that the null hypothesis is true (a), as
well as the definition of the phenomenon's existence with regard to direction-ality.

The significance level, a, has been variously called the error of the first
kind, the Type I error, and the alpha error. Since it is the rate of rejecting a
true null hypothesis, it is taken as a relatively small value. It follows then that
the smaller the- value, the more rigorous the standard of. null hypothesis
rejection or, equivalently, of proof of the phenomenon's existence. Assume
that a phenomenon exists in the population to some given degree. Other
things equal, the more stringent the standard for proof, i.e., the lower the
value of a, the poorer the chances are that the sample will provide results
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which meet this standard, i.e., the lower the power. Concretely, if an investi-
gator is prepared to run only a 1 % risk of false rejection of the null hypothe-
sis, the probability of his data meeting this standard is lower than would
be the case were he prepared to use i.Le iess stringent standard of a 10% risk
of false rejection.

The practice of taking a very small ("the smaller the better") then
results in power values being relatively small. However, the complement of
the power (1 — power), here symbolized as b, is also error, called Type II
or beta error, since it represents the "error" rate of failing to reject a false
null hypothesis. Thus it is seen that statistical inference can be viewed as
weighing, in a manner relevant to the substantive issues of an investigation,
these two kinds of errors. An investigator can set the risk of false null hy-
pothesis rejection at a vanishingly small level, say a = .001, but in so doing,
he may reduce the power of his test to .10 (hence beta error probability, b,
is 1 — .10 = .90). Two comments may be made here:

1. The general neglect of issues of statistical power in behavioral
science may well result, in such instances, in the investigator's failing to
realize that the a = .001 value leads in his situation to power = .10, b = .90
(Cohen, 1962). Presumably, although not necessarily, such a realization
would lead to a revision of experimental plans, including possibly an upward
revision of the a level to increase power.

2. If the investigator proceeds as originally planned, he implies a con-
ception of the relative seriousness of Type I to Type II error (risk of false null
rejection to risk of false null acceptance) of b/a = .90/.001 =900 to 1, i.e.,
he implicitly believes that mistakenly rejecting the null hypothesis under the
assumed conditions is 900 times more serious than mistakenly accepting it.
In another situation, with a = .05, power = .80, and hence b = 1 — .80 = .20,
the relative seriousness of Type I to Type II error is b/a = .20/.05 = 4 to 1;
thus mistaken rejection of the null hypothesis is considered four times as
serious as mistaken acceptance.

The directionality of the significance criterion (left unspecified in the
above examples) also bears on the power of a statistical test. When the null
hypothesis can be rejected in either direction so that the critical significance
region is in both tails of the sampling distribution of the test statistic (e.g.,
a t ratio), the resulting test will have less power than a test at the same a
level which is directional, provided that the sample result is in the direction
predicted. Since directional tests cannot, by definition, lead to rejecting the
null hypothesis in the direction opposite to that predicted, these tests have
no power to detect such effects. When the experimental results are in the
predicted direction, all other things equal, a test at level a, will have power
equal for all practical purposes to a test at 2a2.
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6 I THE CONCEPTS OF POWER ANALYSIS

Concretely, if an experiment is performed to detect a difference between
the means of populations A and B, say mA and mB, in either direction at the
a2 » .OS significance criterion, under given conditions, the test will have a
certain power. If, instead, an anticipation of mA greater than mB leads to a
test at a, » .05, this test will have power approximately equal to a two-tailed
test with a2 = .10, hence greater power than the test at a2 = .OS, provided that
in fact mA is greater than mB. If mB is greater than mA, the test at a, = .OS
has no power, since that conclusion is inadmissible. The temptation to perform
directional tests because of their greater power at the same a level should be
tempered by the realization that they preclude finding results opposite to those
anticipated. There are occasional circumstances where the nature of the
decision is such that the investigator does not need to know about effects in
the opposite direction. For example, he will take a certain course of action if
mA is greater than mB and not otherwise. If otherwise, he does not need to
distinguish between their equality and mB greater than mA. In such infrequent
instances, one-tailed tests are appropriate (Cohen, 196S, pp. 106-111).

In the tables in this book, provision is made for tests at the .01, .OS, and
.10 significance levels. Where a statistical test may ordinarily be performed
either nondirectionally or directionally, both a2 and at tables are provided.
Since power for a, = .05 is virtually identical with power for a2 = .10, a
single power table suffices. Similarly, tables for a, = .01 provide values for
a2 = .02, and tables for a, = .10 values for a2 = .20; also, tables for a2 — .01
provide values for a, = .005, tables at a2 = .05 provide values for at = .025.

1.3 RELIABILITY OF SAMPLE RESULTS AND SAMPLE SIZE
The reliability (or precision) of a sample value is the closeness with

which it can be expected to approximate the relevant population value. It
is necessarily an estimated value in practice, since the population value is
generally unknown. Depending upon the statistic in question, and the
specific statistical model on which the test is based, reliability may or may not
be directly dependent upon the unit of measurement, the population value, and
the shape of the population distribution. However, it is always dependent
upon the size of the sample.

For example, one conventional means for assessing the reliability of a
statistic is the standard error (SE) of the statistic. If we consider the arithmet-
ic mean of a variable X (X), its reliability may be estimated by the standard
error of the mean,

where s2 is the usual unbiased estimate (from the random sample) of the
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population variance of X, and n is the number of independent units in (i.e.,
the size of) the sample.

Concretely, if a sample of n = 49 cases yields a variance estimate for IQ
of 196, then the standard error of the mean is given by

1%
49

2.

Thus, sample means based on 49 cases can be expected to have variability
as measured by their own standard deviation of 2 IQ units. Clearly the greater
the degree to which means of different samples vary among themselves, the
less any of them can be relied upon, i.e., the less the reliability of the mean
of the sample in hand. Note that in this instance reliability depends upon the
unit of measurement (IQ) and sample size, but not on the value of the popu-
lation mean or (to any material degree) on the shape of the IQ distribution.

On the other hand, consider the sampling reliability of a product moment
coefficient of correlation, r. Its standard error is

SEr:

where
rp = the population value of r, and
n = the number of paired observations in the sample.
Note that the reliability of the sample r depends upon the magnitude of

the (generally unknown) population rp value and n, but not on the units in
which the correlated variables are measured.

Not all statistical tests involve the explicit definition of a standard error
of a sample value, but all do involve the more general conception of sample
reliability. Moreover, and most important, whatever else sample reliability
may be dependent upon, it always depends upon the size of the sample.

The nature of the dependence of reliability upon n is obvious from the
illustrative formulas, and, indeed, intuitively. The larger the sample size,
other things being equal, the smaller the error and the greater the reliability
or precision of the results. The further relationship with power is also
intuitively evident: the greater the precision of the sample results, other things
being equal, the greater the probability of detecting a nonnull state of affairs,
i.e., the more clearly the phenomenon under test can manifest itself against
the background of (experimentally irrelevant) variability. Thus, we can
directly formulate the relationship between sample size and power. As is
intuitively obvious, increases in sample size increase statistical power, the
probability of detecting the phenomenon under test.

Focusing on sample size as an invariant factor in power should not make

&$$?'•



8 1 THE CONCEPTS OF POWER ANALYSIS

pthe researcher lose sight of the fact that other research elements potentially
/ under his control also affect power. Random measurement error, be it due
/ to psychometric unreliability, observational carelessness, dirty testtubes, or
/ any other source, because it increases the variability of the observations
/ beyond their necessary " true " variability, also reduces the precision of sample
/ results and thus reduces power. In general, anything which reduces the

/ variability of observations by the exclusion of sources of variability which
are irrelevant to the assessment of the phenomenon under study will serve to
increase power. Experimental design is an area of inquiry wholly devoted
to the removal of irrelevant sources of variability for the increase of precision
and therefore for the increase of the statistical power of tests of null hypoth-
eses (cf. Cox, 1958).

In this book, provision is made for the accomplishment of power analyses
for the statistical tests associated with the most frequently utilized experimen-
tal designs and their accompanying null hypotheses. Issues such as the effects
of a given level of random measurement error on power are not explicitly
provided for. Sample size, the invariant feature of sample precision, is,
however, a factor in all the power tables. It is used in both of the major kinds
of analysis tables herein provided; in the power tables, sample size is one of
the elements used to determine the power of the test, and in the sample size
tables, it is the dependent variable of the function of the desired level of
power (in both instances under given conditions of significance criterion and
population effect size).

1.4 THE EFFECT SIZE

To this point, the phenomenon in the population under statistical test
was considered as either absent (null hypothesis true) or present (null hypoth-
esis false). The absence of the phenomenon implies some specific value for
a population parameter. For example, in a study to determine whether there
is a sex difference in incidence of paranoid schizophrenia, the investigator
may draw a sample of patients bearing that diagnosis from the relevant popu-
lation and determine the proportion of males. The null hypothesis being tested
is that the population proportion of males is .50, a specific value.3-4 Equiva-
lently, we might say that the size of the "effect" of sex on the presence of

3 The assumption is made here that .JO is the proportion of males in the populationof interest.
* For the sake of simplicity, the null hypothesis is treated in this section for the non-

directional form of the significance criterion. For example, a directional (one-tailed) test
here that the male proportion is greater than .50 implies a null hypothesis that it is equal
to or less than .50. The reader may supply his own necessary qualifications of the null
hypothesis for the directional case in each illustration.

1.4 THE EFFECT 5

the diagnosis is z
born in multiple
population in qu
mean), again a s
multiple birth on
in a study of the <
version-extrovers
measure for a sat
here is that the p
other is zero.

In circumstar
hypothesis usuall
vant parameters
research to deter
chief competitor
hypothesis might
and brand B us<
income on branc
determine which
performance rat
difference betwee
C is zero.

Statistical tes
that imply the cc
literal statement <
For example, thi
its null hypothes
means is zero, a
larly, a test of w
be performed by
is that the variarv
a condition whic
instances we car
differences in th
(have an effect si
variable.

Thus, we see
by a null hypotl
meter, one whicl
manifested. Will
convenient to u:
the phenomenon



/ER ANALYSIS 1.4 THE EFFECT SIZE

ts potentially
•or, be it due
testtubes, or
observations

iion of sample
i reduces the
iability which
.y will serve to
Wholly devoted
.se of precision
>f null hypoth-

power analyses
zed experimen-
;h as the effects
e not explicitly
e precision, is,
the major kinds
ile size is one of
the sample size
desired level of
ice criterion and

er statistical test
,ent (null hypoth-
specific value for
ine whether there
, the investigator
he relevant popu-
thesis being tested
value.3-* Equiva-

>n the presence of

lies in the population

s section for the non-
ional (one-tailed) test
othesis that it is equal
ilifications of the null

the diagnosis is zero. In another study concerned with the IQs of children
born in multiple births, the null hypothesis might be that the multiple birth
population in question has a mean IQ of 100 (i.e., the general population
mean), again a specific value, or that the size of effect of being part of a
multiple birth on IQ is zero. As yet another example of a one-sample test,
in a study of the construct validity of a neurophysiological measure of intro-
version-extroversion, its product moment r with an accepted questionnaire
measure for a sample of college students is determined. The null hypothesis
here is that the population r is zero, or that the effect size of either on the
other is zero.

In circumstances where two populations are being compared, the null
hypothesis usually takes the form "the difference in the value of the rele-
vant parameters is zero," a specific value. Thus, in a consumer survey
research to determine whether preference for a particular brand A over its
chief competitor B is related to the income level of the consumer, the null
hypothesis might be: The difference in median family income of brand A
and brand B users is zero, or, equivalently, that the size of the effect of
income on brand preference is zero. Or, in a personnel selection study to
determine which of two screening tests, A or B, is a better predictor of
performance ratings (C), the null hypothesis might take the form: The
difference between population product moment r's of A with C and B with
C is zero.

Statistical tests involving more than two samples test null hypotheses
that imply the constancy of a parameter over the populations involved. The
literal statement of the null hypothesis depends upon the specific test involved.
For example, the f test of the analysis of variance for k ̂  2 means has as
its null hypothesis the proposition that the variance of a set of population
means is zero, a condition that can only obtain when they are equal. Simi-
larly, a test of whether a set of k ̂  2 population proportions are equal can
be performed by means of the chi-square statistic. The null hypothesis here
is that the variance of the population proportions equals zero (an exact value),
a condition which can only obtain when they are all equal. In both of these
instances we can think of the null hypothesis as the circumstance in which
differences in the independent variable, the k populations, have no effect
(have an effect size of zero) on the means or proportions of the dependent
variable.

Thus, we see that the absence of the phenomenon under study is expressed
by a null hypothesis which specifies an exact value for a population para-
meter, one which is appropriate to the way the phenomenon under study is
manifested. Without intending any necessary implication of causality, it is
convenient to use the phrase "effect size" to mean "the degree to which
the phenomenon is present in the population," or "the degree to which the
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null hypothesis is false." Whatever the manner of representation of a phenom-
enon in a particular research in the present treatment, the null hypothesis
always means that the effect size is zero.

By the above route, it can now readily be made clear that when the null
hypothesis is false, it is false to some specific degree, i.e., the effect size (ES)
is some specific nonzero value in the population. The larger this value, the
greater the degree to which the phenomenon under study is manifested.
Thus, in terms of the previous illustrations:

1. If the percentage of males in the population of psychiatric patients
bearing a diagnosis of paranoid schizophrenia is 52%, and the effect is
measured as a departure from the hypothesized 50%, the ES is 2%; if it is
60%, the ES is 10%, a larger ES.

2. If children of multiple births have a population mean IQ of 96, the
ES is 4 IQ units (or — 4, depending on directionality of significance criterion);
if it is 92, the ES is 8 (or - 8) IQ units, i.e., a larger ES.

3. If the population product moment r between neurophysiological and
questionnaire measures of introversion-extroversion is .30, the ES is .30; if
thi r is .60, so is the ES, a larger value and a larger departure from the null
h}pothesis, which here is r-0.

4. If the population of consumers preferring brand A has a median
annual income $700 higher than that of brand B, the ES is 5700. If the
population median difference and hence the ES is $1000, the effect of income
on brand preference would be larger.

Thus, whether measured in one unit or another, whether expressed as a
difference between two population parameters or the departure of a popu-
lation parameter from a constant or in any other suitable way, the ES can
itself be treated as a parameter which takes the value zero when the null
hypothesis is true and some other specific nonzero value when the null hypo-
thesis is false, and in this way the ES serves as an index of degree of departure
from the null hypothesis.

The reasons that the above dicussion has proceeded in such redundant
detail are twofold. On the one hand, ES is in practice a most important
determinant of power or required sample size or both, and on the other hand,
it is the least familiar of the concepts surrounding statistical inference among
practicing behavior scientists. The reason for the latter, in turn, can be found
in the difference in null hypothesis testing between the procedures of Fisher
(1949) and those of Neyman and Pearson (1928, 1933).

The Fisherian formulation posits the null hypothesis as described above,
i.e., the ES is zero, to which the "alternative" hypothesis is that the ES is
not zero, i.e., any nonzero value. Without further specification, although
null hypotheses may be tested and thereupon either rejected or not rejected,
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1.4 THE EFFECT SIZE 11
no basis for statistical power analysis exists. By contrast, the Neyman-
Pearson formulation posits an exact alternative for the ES, i.e., the exact
size of the effect the experiment is designed to detect. With an exact alterna-
tive hypothesis or specific nonzero ES to be detected, given the other elements
in statistical inference, statistical power analysis may proceed.

Thus, in the previous illustrations, the statements about possible popu-
lation ES values (e.g., "if the population product moment r between neuro-
physiological and questionnaire measures of introversion-extroversion is
.30, the ES is .30") are statements of alternative hypotheses.

The relationship between ES and power should also be intuitively evident.
The larger the ES posited, other things (significance criterion, sample size)
being equal, the greater the power of the test. Similarly, the relationship
between ES and necessary sample size: the larger the ES posited, other
things (significance criterion, desired power) being equal, the smaller the
sample size necessary to detect it.

To this point, the ES has been considered quite abstractly as a parameter
which can take on varying values (including zero in the null case). In any
given statistical test, it must be indexed or measured in some defined unit
appropriate to the data, test, and statistical model employed. In the previous
illustrations, ES was variously expressed as a departure in percent from 50,
a departure in IQ units from 100, a product moment r, a difference between
two medians in dollars, etc. It is clearly desirable to reduce this diversity of
units as far as possible, consistent with present usage by behavioural scien-
tists. From one point of view, a universal ES index, applicable to all the
various research issues and statistical models used in their appraisal, would be
the ideal. Apart from some formidable mathematical-statistical problems in
the way, even if such an ideal could be achieved, the result would express ES
in terms so unfamiliar to the researcher in behavioral science as to be self-
defeating.

However, some generalization is obviously necessary. One cannot pre-
pare a set of power tables for each new measurement unit with which one
works. That is, the researcher who plans a test for a difference in mean IQs
must use the same power tables as another who plans a test for a difference in
mean weights, just as they will use the same tables oft when the research is
performed, t is a "pure" (dimensionless) number, one free of raw unit, as
are also, for example, .correlation coefficients or proportions of variance.
Thus, as will be seen in Chapter 2, the ES index for differences between popu-
lation means is standardized by division by the common within-population
standard deviation (a), i.e., the ES here is not the difference between mean
"raw" scores, but the difference between mean "x." standard scores (Hays,
1973), or the mean difference expressed in within-population o units. In the F
test for k ^ 2 population means, the ES also uses such standardized means;
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in testing "main effects" in the analysis of variance the ES is their standard
deviation, <rm, the standard deviation of standardized means (Chapter 8).

Each test for which power tables are provided thus has a metric-free ES
index appropriate to it. A higher order of generalization is frequently pos-
sible. Specifically, several ES indices can be translated into the proportion of
variance (PV) accounted for in the dependent variable. Where this is pos-
sible, it is discussed in the introductory material for the test. Also, each ES
index chosen usually relates to yet other commonly used indices and these are
also described in the same place.

The behavior scientist who comes to statistical power analysis may find
himself grappling with the problem of what ES to posit as an alternate to
the null hypothesis, or, more simply, how to answer the questions "How
large an effect do I expect exists in the population?" He may initially find
it difficult to answer the question even in general terms, i.e., "small" or
"large," let alone in terms of the specific ES index demanded. Being forced
to think in more exact terms than demanded by the Fisherian alternative
(ES is any nonzero value) is likely to prove salutary. He can call upon theory
for some help in answering the question and on his critical assessment of
prior research in the area for further help. When these are supplemented with
the understanding of the ES index provided in the introductory material to
the relevant chapter, he can decide upon the ES value to adopt as an alterna-
tive to the null.

When the above has not provided sufficient guidance, the reader has an
additional recourse. For each statistical test's ES index, the author proposes,
as a convention, ES values to serve as operational definitions of the qualitative
adjectives "small," "medium," and "large." This is an operation fraught with
many dangers: The definitions are arbitrary, such qualitative concepts as
"large" are sometimes understood as absolute, sometimes as relative; and
thus they run a risk of being misunderstood.

In justification, several arguments may be offered. It must first be said that
all conventions are arbitrary. One can only demand of them that they not
be unreasonable. Also, all conventions may be misused and their conven-
tional status thus abused. For example, the .05 significance criterion, although
unofficial, has come to serve as a convention for a (minimum) basis for reject-
ing the null hypothesis in most areas of behavioral and biological science.
Unfortunately, its status as only a convention is frequently ignored; there
are many published instances where a researcher, in an effort at rectitude,
fails to report that a much desired null rejection would be possible at the .06
level but instead treats the problem no differently than he would have had it
been at the .50 level! Still, it is convenient that "significance" without further
specification can be taken to mean "significance at no more than the .05
level."
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Although arbitrary, the proposed conventions will be found to be reason-
able by reasonable people. An effort was made in selecting these operational
criteria to use levels of ES which accord with a subjective average of effect
sizes such as are encountered in behavioral science. " Small" effect sizes must
not be so small that seeking them amidst the inevitable operation of measure-
ment and experimental bias and lack of fidelity is a bootless task, yet not so
large as to make them fairly perceptible to the naked observational eye.
Many effects sought in personality, social, and clinical-psychological research
are likely to be small effects as here defined, both because of the attenutation
in validity of the measures employed and the subtlety of the issues frequently
involved. In contrast, large effects must not be defined as so large that their
quest by statistical methods is wholly a labor of supererogation, or to use
Tukey's delightful term " statistical sanctification." That is, the difference in
size between apples and pineapples is of an order which hardly requires an
approach via statistical analysis. On the other side, it cannot be defined so as
to encroach on a reasonable range of values called medium. Large effects are
frequently at issue in such fields as sociology, economics, and experimental and
physiological psychology, fields characterized by the study of potent variables
or the presence of good experimental control or both.

Since effects are appraised against a background of random variation,
the control of various sources of variation through the use of improved
research designs serves to increase effect sizes as they are defined here. A
simple example of this is a study of sex difference in some defined ability.
Assume that a difference of 4 score points exists between male and female
population means, where each population has a standard deviation of 16.
A research plan which randomly samples the two populations (simple
randomized design or comparison between two independent means) is
operating with an ES of 4/16 = .25. Another research plan might proceed by
comparing means of males and their sisters (comparison of two dependent
means). Now, these populations can also be assumed to have a mean differ-
ence of 4 score points, but because of the removal of the variation between
families afforded by this design (or equivalently when allowance is made for
the brother-sister correlation in the ability), the effective standard deviation
will be reduced to the fraction -y/l —r of 16, say to 12 (when r between
siblings = .44), and the actual ES operating in the situation is 4/12 = .33,
a larger value than for the simple randomized design. Thus, operative effect
sizes may be increased not only by improvement in measurement and experi-
mental technique, but also by improved experimental designs.

Each of the Chapters 2-8 will present in some detail the ES index
appropriate to the test to which the chapter is devoted. Each will be translated
into alternative forms, the operational definitions of "small," "medium," and
"large" will be presented, and examples drawn from various fields will

I '
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illustrate the test. This should serve to clarify the ES index involved and
make the methods and tables useful in research planning and appraisal.

1.5 TYPES OF POWER ANALYSIS
Four parameters of statistical inference have been described: power,

significance criterion (a), sample size (n), and effect size (ES). They are so
related that any one of them is a function of the other three, which means
that when any three of them are fixed, the fourth is completely determined.
This relationship makes formally possible four types of power analysis; in
each, one of these parameters is determined as a function of the other three
(Cohen, 1965, pp. 97-101).

1.5.1 POWER AS A FUNCTION OF a, ES, AND n. The preceding material
has been largely oriented toward the type of analysis in which, given the
specification of a, ES, and n, power is determined. For example, an investi-
gator plans a test of the significance of a product moment r at a2 = .05 using
n = 30 cases. The ES he wishes to detect is a population r of .40. Given these
specifications, he finds (by the methods of Section 3.3 in Chapter 3) that power
equals .61. He may then decide to change his specifications to increase power.

Such analyses are usefully performed as part of research planning.
They can also be performed on completed studies to determine the power
which a given statistical test had, as in the power survey of the studies in
a volume of the Journal of Abnormal and Social Psychology (Cohen, 1962).
In each of Chapters 2-9, the power tables (numbered B.3.A, where B is the
chapter number and A indexes the significance criterion) are designed for
this type of analysis. The sections designated B.3 discuss and illustrate the
use of these tables.

1.5.2 n AS A FUNCTION OF ES, a, AND POWER. When an investigator
anticipates a certain ES, sets a significance criterion a, and then specifies
the amount of power he desires, the n which is necessary to meet these
specifications can be determined. This (second) type of power analysis must
be at the core of any rational basis for deciding on the sample size to be
used in an investigation (Cohen, 1965, pp. 97-99). For example, an investi-
gator wishes to have power equal to .80 to detect a population r of .40 (the
ES) at a2 = .05. By the methods described in Section 3.4 in -Chapter 3, he
finds that he must have n = 46 cases to meet these specifications. (A discussion
of the basis for specifying desired power and the use of power = .80 as a
convention will be found in Section 2.4 of Chapter 2.)

This major type of power analysis is discussed and illustrated in the
Sections B.4 (where B indexes the chapter numbers 2-8). Each of these
sections contain sample size tables (numbered B.4.A) from which, given a,

theES.anddt
to n determin

1.5.3 ES
analysis is of
quite useful h
which one cai
example, an ii
product mom
tion r (the ES
specifications
3.3.5) is that t
46, the detect

This form
sons of reseai
can define, as
that ES detect
test. So defin
test, expresse'

This type
chapters. Ho
the tables, h<
tests discuss*
proves more

1.5.4 a
analysis ansv
given ES wil
an investigal
power to be
specification
be found (b
about a, =.

This typ
strength of I
loath to coi
means toler
power. Wh<
stances may

This typ
2-9, althou]
reader has



: POWER ANALYSIS

dex involved and
nd appraisal. :

described: power,
(ES). They are so
iree, which means
iletely determined,
power analysis; in
of the other three

preceding 'material
i which, given the
tample, an investi-
r at a2 — -^5 using
of .40. Given these
apter 3) that power
; to increase power,
research planning,
itermine the power
:y of the studies in
ogy (Cohen, 1962).
3.A, where B is the
i) are designed for
s and illustrate the

hen an investigator
, and then specifies
,sary to meet these
wwer analysis must
e sample size to be
ixample, an investi-
gation r of .40 (the
.4 in Chapter 3, he
itions. (A discussion
of power = .80 as a

d Illustrated in the
2-8). Each of these
rom which, given a,

1.5 TYPES OF POWER ANALYSIS 15

the ES, and desired power, the n is determined. A slightly different approach
to n determination is employed in Chapter 9.

1.5.3 ES AS A FUNCTION OF a, n, AND POWER. A third type of power
analysis is of less general utility than the first two, but may nevertheless be
quite useful in special circumstances (Cohen, 1970). Here, one finds the ES
which one can expect to detect for given a, n, and with specified power. For
example, an investigator may pose the question, " For a significance test of a
product moment r at a2 = .05 with a sample of n = 30, what must the popula-
tion r (the ES) be if power is to be .80, i.e., what is the detectable ES for these
specifications?" The answer, obtainable by backward interpolation (in Table
3.3.5) is that the population r must be approximately .48. Were his n equal to
46, the detectable ES would be r = .40.

This form of power analysis may be conventionalized for use in compari-
sons of research results as in literature surveys (Cohen, 1965, p. 100). One
can define, as a convention, a comparative detectable effect size (CDES) as
that ES detectable at a2 = .05 with power = .50 for the n used in the statistical
test. So defined, the CDES is an inverse measure of the sensitivity of the
test, expressed in the appropriate ES unit.

This type of power analysis is not discussed in detail in the ensuing
chapters. However, when the reader has become familiar with the use of
the tables, he will find that it can be accomplished for all of the statistical
tests discussed by backward interpolation in the power tables, or when it
proves more convenient, in the sample size tables.

1.5.4 a AS A FUNCTION OF n, POWER, AND ES. The last type of power
analysis answers the question, "What significance level must I use to detect a
given ES with specified probability (power) for a fixed given n?" Consider
an investigator whose anticipated ES is a population r of .30, who wishes
power to be .75, and who has an n of 50, which he cannot increase. These
specifications determine the significance criterion he must use, which can
be found (by rough interpolation between subtables in Table 3.4.1) to be
about a, = .08, or a2 = .15).

This type of analysis is very uncommon, at least partly because of the
strength of the significance criterion convention, which makes investigators
loath to consider "large" values of a. We have seen that this frequently
means tolerating (usually without knowing it) large values of b, i.e., low
power. When power issues are brought into consideration, some circum-
stances may dictate unconventionally large a criteria (Cohen, 1965, p. 99ff).

This type of power analysts is not, as such, further discussed in Chapters
2-9, although it is indirectly considered in some of the examples. When the
reader has become familiar with the tables, it can be accomplished for all

•••m
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the statistical tests discussed in this book by interpolation between subtables
of the sample size tables (B.4.A), or when more convenient, between power
tables (B.3.A), within the range provided for a, i.e., a2: .01-.20, and a,:
.005-. 10.

In summary, four types of power analysis have been described. This book
is designed primarily to facilitate two of these, the solutions for power and
for sample size. It is also possible, but with less ease, to accomplish the other
two, solution for ES and for a, by means of backward interpolation in the
tables.

1.7

1.5.5 "PROVING" THE NULL HYPOTHESIS. Research reports in the
literature are frequently flawed by conclusions that state or imply that the
null hypothesis is true. For example, following the finding that the difference
between two sample means is not statistically significant, instead of properly
concluding from this failure to reject the null hypothesis that the data do
not warrant the conclusion that the population means differ, the writer
concludes, at least implicitly, that there is no difference. The latter conclusion
is always strictly invalid, and is functionally invalid as well unless power is
high. The high frequency of occurrence of this invalid interpretation can be
laid squarely at the doorstep of the general neglect of attention to statistical
power in the training of behavioral scientists.

What is really intended by the invalid affirmation of a null hypothesis is not
that the population ES is literally zero, but rather that it is negligible, or
trivial. This proposition may be validly asserted under certain circumstances.
Consider the following: for a given hypothesis test, one defines a numerical
value i (or iota) for the ES, where i is so small that it is appropriate in the
context to consider it negligible (trivial, inconsequential). Power (1 — b) is
then set at a high value, so that b is relatively small. When, additionally, a is
specified, n can be found. Now, if the research is performed with this n and it
results in nonsignificance, it is proper to conclude that the population ES is
no more than i, i.e., that it is negligible; this conclusion can be offered as
significant at the b level specified. In much research, " no " effect (difference,
correlation) functionally means one that is negligible; "proof" by statistical
induction is probabilistic. Thus, in using the same logic as that with which we
reject the null hypothesis with risk equal to a, the null hypothesis can be
accepted in preference to that which holds that ES = i with risk equal to b.
Since i is negligible, the conclusion that the population ES is not as large as i
is equivalent to concluding that there is " no " (nontrivial) effect. This comes
fairly close and is functionally equivalent to affirming the null hypothesis
with a controlled error rate (b), which, as noted above, is what is actually
intended when null hypotheses are incorrectly affirmed (Cohen, 1965, pp.
100-101; Cohen, 1970). (See Illustrative Examples 2.9, 3.5, 6.8, and 9.24.)
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This statistically valid basis for extracting positive conclusions from
"negative findings" may not be of much practical help to most investigators.
If, for example, one considers a population r = .10 as negligible (hence, i),
and plans a test of thi null hypothesis (at a2 = .05) for power - .95 (b = .05)
to detect i, one discovers that the n required is 1308; for power = .90 (b = .10),
the required n = 1046; and for power =.80 (b = .20), n = 783 (Table 3.4.1).
For the much more liberal specification of r = .20 as i, the test (at a2 = .05)
for power = .95 (b = .05) requires n = 322; for power = .90 (b = . 10) requires
n = 258, and even for power =.80 (b = .20), the required n = 193 (Table
3.4.1). Thus, relatively large sample sizes are necessary to establish the negligi-
bility of an ES. But if nothing else, this procedure at least makes explicit what
it takes to say or imply from a failure to reject the null hypothesis that there is
no (nontrivial) correlation or difference between A and B.

1.6 SIGNIFICANCE TESTING
Although the major thrust of this work is power analysis, a simple rela-

tionship between power and significance made it relatively simple in the
computation of the power tables to provide an aid to significance testing
which users of this handbook may find convenient. Generally, we can define
the effect size in the sample (ESS) using sample statistics in the same way as
we define it for the population, and a statistically significant ESS is one which
exceeds an appropriate criterion value. For most of the power tables, these
criterion values for significance of the sample ES (for the given a significance
criterion and n) are provided in the second column of the power tables under
the symbol for the ES for that test with subscript c (for criterion), e.g.,
dc for the t test on means.

1.7 PLAN OF CHAPTERS 2—9
Each of the succeeding chapters presents a different statistical test. They

are similarly organized, as follows:
Section 1. The test is introduced and its uses described.
Section 2. The ES index is described and discussed in detail.
Section 3. The characteristics of the power tables and the method of

their use are described and illustrated with examples.
Section 4. The characteristics of the sample size tables and the method

of their use are described and illustrated with examples.
Section 5. The use of the power tables for significance tests is described

and illustrated with examples.
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